SKA Data Challenge 2 Truth Catalog & Continuum Data¶

Truth catalog¶

truthcat=truthcat_prep(truthcat,wcs=wcs)
truthcat.head()
id ra dec hi_size line_flux_integral central_freq pa i w20 log_line_flux_integral log_pa central_freq_MHz w20_MHz w20_KHz w20_px line_start_MHz line_end_MHz line_center_px ra_px dec_px
0 0 180.191315 -29.741030 4.451970 3.669104 1.120767e+09 268.105103 53.382599 145.950442 0.564560 2.428305 1120.766592 -0.686770 -686.769916 23.0 1120.079822 1121.453362 5684 428 975
1 1 180.051636 -30.422684 4.398894 3.463066 1.114182e+09 280.521301 46.295010 255.653858 0.539461 2.447966 1114.181760 -1.206541 -1206.540706 40.0 1112.975219 1115.388301 5465 585 99
2 2 180.036743 -29.837250 3.782270 3.698041 1.119836e+09 295.451538 87.650909 185.113345 0.567972 2.470486 1119.836160 -0.872322 -872.322327 29.0 1118.963838 1120.708482 5653 601 851
3 3 179.678726 -29.798370 2.686259 3.795095 1.121970e+09 28.291687 63.669506 326.850396 0.579223 1.451659 1121.969664 -1.543867 -1543.867313 51.0 1120.425797 1123.513531 5724 1000 901
4 4 179.826416 -29.689720 2.291830 3.693589 1.115078e+09 324.631927 18.434134 44.200626 0.567449 2.511391 1115.077504 -0.204683 -204.682994 7.0 1114.872821 1115.282187 5495 836 1041
id ra dec hi_size line_flux_integral central_freq pa i w20 log_line_flux_integral log_pa central_freq_MHz w20_MHz w20_KHz w20_px line_start_MHz line_end_MHz line_center_px ra_px dec_px
count 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 1.109100e+04 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000 11091.000000
mean 5545.000000 179.972414 -29.966005 6.118055 12.517398 1.037560e+09 180.711289 57.511148 252.100080 0.830318 2.126319 1037.560197 -1.189703 -1189.703036 39.655577 1036.370494 1038.749900 2914.451086 672.751961 685.166802
std 3201.840252 0.332330 0.281780 3.903841 22.411043 5.657355e+07 103.328386 21.470480 123.824019 0.434347 0.429552 56.573549 0.586674 586.673695 19.562054 56.626292 56.526846 1883.054079 370.143466 362.286564
min 0.000000 179.424271 -30.493881 1.073070 1.340326 9.503012e+08 0.013977 0.371150 30.296076 0.127210 -1.854584 950.301248 -4.220918 -4220.918283 5.000000 947.897431 950.621440 10.000000 7.000000 7.000000
25% 2772.500000 179.677788 -30.198223 3.561907 2.994294 9.873968e+08 90.743851 42.110619 170.006210 0.476294 1.957817 987.396768 -1.560161 -1560.161209 27.000000 986.233098 988.674568 1244.500000 355.000000 387.000000
50% 5545.000000 179.955093 -29.946529 5.115549 5.576763 1.031884e+09 182.674652 60.428268 221.884164 0.746382 2.261678 1031.883776 -1.046541 -1046.541128 35.000000 1030.610010 1033.076265 2726.000000 692.000000 710.000000
75% 8317.500000 180.257912 -29.717285 7.551074 12.928522 1.086454e+09 270.105148 75.569401 330.289404 1.111549 2.431533 1086.454080 -0.800745 -800.745271 52.000000 1085.478787 1087.819062 4542.000000 1001.000000 1005.000000
max 11090.000000 180.572922 -29.503580 46.343719 582.329078 1.149487e+09 359.885406 89.999641 891.871827 2.765168 2.556164 1149.486720 -0.138804 -138.803743 141.000000 1148.631959 1150.471096 6640.000000 1280.000000 1280.000000
<matplotlib.axes._subplots.AxesSubplot at 0x7fe1832887f0>

Continuum cube¶

HI properties source vs non-source¶

Are sources visible among the noise?¶

Attempts at de-noising¶

test curvefit to ground truth spectral lines¶

vv=curve_fit(funcV,xvec,svec,p0=p0)
gg=curve_fit(funcG,xvec,svec,p0=pgauss)
ll=curve_fit(Lorentzian, xvec, svec,p0=plor)